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Abstract

Two-dimensional micro-scale Rayleigh–Bénard flows are investigated numerically using direct simulation Monte

Carlo method. An enclosure of length-to-height aspect ratio of AS = 4 is taken to explore the influence of initial setting

of simulated molecules. The simulation domain is divided into 81 · 21 sampling cells and the range of Rayleigh number

from 3000 to 10000 corresponds to the convection state. Cases of 8, 10, 12, 14, 16 and 24 simulated particles in each

collision cell are examined. It is shown that flow patterns with three-, four- or five-roll modes may appear depending on

the number of simulated particles.
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1. Introduction

Over the past few decades, the direct simulation

Monte Carlo (DSMC) method has been the predomi-

nant predictive tool in rarefied gas flows. This approach

was introduced by Bird [1] and has been applied to a

variety of flow problems; for example, rarefied atmo-

spheric gases, film growth and etching, and microsys-

tems [2]. The DSMC method is a direct simulation

method developed from kinetic theory. In this method,

a large number of real gas molecules are modeled by a

finite number of representative particles called simulated
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particles. The particle motions and the interparticle col-

lisions are decoupled in a short time interval. Particle

motions are modeled deterministically, whereas inter-

particle collisions are handled on a probabilistic basis

in a small geometric cell called collision or computa-

tional cell or subcell. Macroscopic quantities are calcu-

lated by sampling particle properties in a particular

cell called cell or sampling cell. Since the DSMC tech-

nique applies the cell network for the sampling of the

macroscopic properties and for the selection of collision

pairs, simulation results are good as long as the cell-size

requirement on the macroscopic flow gradient resolution

is satisfied and each of the cells contains sufficient simu-

lated particles. It has been found that the collision cell

size must be less than a mean free path [3,4] and each

collision cell contains at least 5–10 [5] or 20 simulated

particles [6].
ed.
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Nomenclature

AS aspect ratio L/H

d molecular diameter [m]

Fr Froude number v2h=gH
g molecular gravity [m/s2]

H height of enclosure [m]

Kn Knudsen number k/H
kB Boltzmann constant

L length of enclosure [m]

m molecular weight [kg]

n number density [1/m3]

P pressure [Pa]

Ra Rayleigh number (1024/125p)[(1 � rT)/

(1 + rT)Kn]
2

Rac critical Rayleigh number

rT temperature ratio Tc/Th

T temperature [K]

U,V dimensionless velocity components u/vh, v/vh

U*,V* normalized velocity component U=jV
*

maxj,
V =jV

*

max j
V
*

dimensionless velocity vector V
*
¼ V i

*
þU j

*

u,v dimensional velocity components [m/s]

vh most probable thermal speed
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT h=m

p

[m/s]

X,Y dimensionless coordinates

x,y Cartesian coordinates [m]

Greek symbols

h dimensionless temperature function

(T � Tc)/(Th � Tc)

k molecular mean free path [m]

q density [kg/m3]

s mean free time k0/vh [s]

Subscripts

0 initial

c cold wall

h hot wall

R right side of enclosure

L left side of enclosure

M middle of enclosure

max maximum value

Superscripts

– horizontal mean value

* normalized value
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The DSMC method has also been employed to simu-

late the vortices induced by thermally driven flow in

temperature fields. The best known thermally driven

flow is convective motions in a horizontal fluid layer

heated from below, called Rayleigh–Bénard (RB) con-

vection. In the RB convection, the convective vortex will

appear when the temperature difference between the top

and bottom fluid layers exceeds a critical value. The RB

convection in continuum fluid dynamics have been

widely studied in the past [7–11]. In recent years, many

researchers have also directed attention to the RB con-

vection in rarefied gases and a considerable number of

numerical investigations using the DSMC method have

been made.

Attempts to simulate the RB convection of a rarefied

gas by the DSMC method were first reported by Garcia

[12], who studied a rigid-free system with an aspect ratio

of 1 at Kn = 0.02. Garcia and Penland [13] compared the

DSMC results combined with principal oscillation pat-

tern (POP) analysis with the numerical solution of line-

arized Navier–Stokes equations. Both approaches found

that the results in DSMC simulation agreed closely with

those obtained by the Navier–Stokes equations. Stefa-

nov and Cercignani [14] employed the DSMC method

to study the effects of various dimensionless control

parameters on Bénard instability in a rarefied gas.

Watanabe et al. [15] had shown that the determined crit-

ical Rayleigh number Rac of the RB system predicted by
the DSMC method is in good agreement with that

obtained by hydrodynamic equations. Golshtein and

Elperin [16] investigated Bénard and thermal stress

instabilities in a stratified rarefied gas with large temper-

ature differences. The results illustrated that the DSMC

method can be used to resolve the relatively slow vortex

motion. Watanabe and Kaburaki [17] applied the

DSMC method to simulate the transition of convection

patterns in the three-dimensional RB system of length-

to-width-to-height ratio 8:8:1 and 2:2:1 and discussed

the effect of cell size on the onset of convection. The hex-

agonal roll patterns and the hysteresis in their transition

were observed, and the onset of convection and the tran-

sition of convection patterns were affected by the sam-

pling cell size. Hirano et al. [18] calculated the RB

convection of the rarefied gas at Ra = 2990 under vari-

ous Kn using the DSMC method and finite difference

(FD) method. They found that the rarefaction effect

causes the average temperature and the average vertical

velocity in the rarefied gas to be higher than those in the

continuum region. Stefanov et al. [19,20] compared the

numerical solutions for RB convection of a rarefied

monatomic gas by the DSMC method and by the FD

method at a constant ratio of the cold and hot wall tem-

perature under various Kn and Fr. The hysteresis loops

between the co-existing attractors in the convection re-

gime were also observed. All of these studies had sup-

ported that the DSMC method is a useful technique
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for simulating the convection vortex formation in the

rarefied gas. However, the influence of the number of

simulated particles on the convective roll patterns in

the RB system has rarely been examined in the past. This

is important for the DSMC simulation of convective

instabilities because the convective roll patterns are very

sensitive to initial conditions.

In this paper, the convective vortex formation in the

two-dimensional RB convection in a micro-scale enclo-

sure is simulated using the DSMC method with various

number of simulated particles and Ra in order to inves-

tigate the effects of the number of simulated particles on

convective flow patterns under various Ra.
2. Problem statement

Consider a hard sphere of rarefied gas with molecular

diameter d = 3.7 · 10�10 m and mass m = 4.8 · 10�26 kg

in a horizontal two-dimensional rectangular enclosure of

length L and height H as shown in Fig. 1. The aspect

ratio (AS = L/H) of enclosure is chosen to be 4. In the

present study, the calculation is performed under the

same initial condition as that employed by Watanabe

et al. [15]; namely, the initial temperature T0 = 80 K

and the initial pressure P0 = 20 Pa, so that the number

density is n0 = 1.81 · 1022 m�3 and the mean free path

is k0 = 9.08 · 10�5 m. The top wall temperature is

Tc = T0 and the bottom wall temperature is Th. The

gas is assumed to be heated from below, so that Th > Tc.

The acceleration of gravity g is chosen to be a hypothet-

ical value, which is consistent with constant density, for

the purpose of eliminating the density variations in the

pure conduction state [12,13], i.e. g = kB(Th � Tc)/mH,

where kB is the Boltzmann constant. According to the

Chapman–Enskog theory [21] for hard spheres, the

Rayleigh number can be expressed as Ra = (256/

125p)[(Th � Tc)/TrKn]
2, where Tr is the reference tem-

perature and defined as Tr = (Th + Tc)/2, and Kn is the

Knudsen number and defined as Kn = k0/H. In this sim-

ulation, we assume that initial molecular velocities are

sampled from equilibrium Maxwellian distribution. Dif-

fuse reflection boundary condition is imposed at the top
hT T=

cT T=

Specular 
reflection 

Specular 
reflection 

L 

H 

0 x

y  

g

Diffuse reflection

Diffuse reflection

Fig. 1. Simulation region for the RB system.
and bottom walls, whereas specular reflection boundary

condition is assumed at the boundaries on both sides.
3. Numerical method

In the present paper, we follow the DSMC algorithm

[22] and investigate numerically the RB flow in a rarefied

gas. The essence of the DSMC algorithm contains four

important processes: move the molecules, index and

cross-reference the molecules, simulate collisions, and

sample the flow field. The molecular motions and inter-

molecular collisions are uncoupled over short-time inter-

vals, and the collisions take place on a probabilistic

basis. It is noted that the time interval should be less

than the mean collision time and the collision cell size

must be smaller than the mean free path. In the collision

procedure, we follow the ‘‘No Time Counter (NTC)’’

scheme suggested by Bird [22] for the selection of colli-

sion pair. The Knudsen number Kn is set to be 0.01

and the range of Rayleigh number Ra is from 3000 to

10000. The computational domain is divided into

81 · 21 sampling cells and 405 · 105 collision cells, so

that each collision cell with linear dimension is smaller

than local mean free path. To explore the influence of

initial setting of simulated molecules, each collision cell

initially contains 8, 10, 12, 14, 16 and 24 simulated par-

ticles on the calculation. They are denoted by Cases I–

VI, respectively. The time step is 0.9 of mean collision

time s = k0/vh, where vh is the most probable thermal

speed vh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT h=m

p
, and a sampling is accomplished

in every two simulated time steps.
4. Results and discussion

In this study, the stable convection flow patterns are

our concern; therefore, we first examine how long the

stable RB flow will achieve. Fig. 2 shows the time devel-

opment of the mid-height (Y = 1/2) dimensionless tem-

peratures near the left- and right-side boundaries

(hL,hR) and at the middle of the simulation domain

hM together with the horizontal average temperature �h
of Cases I and VI at Ra = 3000 and 10000, respectively.

The dimensionless temperature is defined as h =

(T � Tc)/(Th � Tc). Here, the flow properties are aver-

aged in every 100 times of sampling. As the figure indi-

cates, the stable temperature fields can be observed after

nearly 25000 time steps. Since the number of simulated

particles of Cases I and VI are the smallest and largest

respectively, and the hot wall temperature and thermal

velocity is the lowest at Ra = 3000 and the highest at

Ra = 10000, one can safely deduce that the time steps

where the convection flow patterns are stable may be less

than 25000 time steps for other simulation cases.
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Fig. 2. The time-development of the mid-height temperature at Ra = 3000 and 10000 for simulation Cases (a) I and (b) VI. (hL: left-
side boundary, hR: right-side boundary, hM: in the middle of enclosure, �h: horizontal averaged.)
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Actually, this assumption is valid in this study. Accord-

ing to the results, in the calculations, to insure that the

RB flow is stable, sampling is started after 30000 time

steps and the flow properties are averaged over 20000

time steps for each simulation case. According to this

sampling method, for Case I, the fractional errors (or

coefficient of variation) of temperatures at the middle

of simulation domain and near the boundaries on both

sides are approximately 5.31%, 5.78% and 6.82% at

Ra = 3000 and 2.1%, 2.55% and 2.44% at Ra = 10000;

for Case VI, they are nearly 2.46%, 4.28% and 2.77%

at Ra = 3000 and 2.06%, 1.71% and 1.77% at

Ra = 10000. The results illustrate that the fraction error

becomes small for larger number of simulated particles

and higher Ra.

Let us look closely at the changes in convective

flow patterns of the flow fields for various Ra under

constant number of simulated particles. The velocity

vectors and isotherms at various Ra for Cases I–VI

are shown in Figs. 3–8, respectively. In these figures,

velocity vectors are normalized by the maximum

velocity vector for each figure and defined

as V
*�

¼ V
*

= j V
*

max j . In Fig. 3 for Case I, in which

each collision cell initially contains eight simulated

particles, the flow patterns are five-roll modes at

Ra = 5000, 8000 and 9000 and four-roll modes at

the others. One may notice that the appearance of
the four- or five-mode is uncertain as Ra increases

in this case. In addition, it is worth noting that the

rotational flow directions of convection rolls are not

always identical for the same number of rolls at some

Ra. For example, the flow patterns at Ra = 3000,

4000, 6000, 7000 and 10000 are all four-roll modes;

the arrangement of convection rolls from the left- to

right-side boundaries is (�,+,�,+) at Ra = 3000,

4000 and 6000, but it is (+,�,+,�) at Ra = 7000

and 10000, where the � and + are the symbol for

the counterclockwise- and clockwise-rotating vortex

flows, respectively. From a mathematical point of view,

the four-roll structure of (�,+,�,+) and that of

(+,�,+,�) are two different solutions; however, from a

physical point of view, they are all the same solutions.

Since the side walls are assumed to be specular reflection

boundary conditions, the RB convective flow possesses

periodic structures in the x-direction. Accordingly, the

counterclockwise- and clockwise-rotating vortex flows

in the RB convection are equivalent. The reversed rota-

tional flow directions are probably due to the small

numerical disturbances in the DSMC computations.

Fig. 4 shows Case II, in which there are 10 simu-

lated particles per collision cell initially. As the figure

indicates, the flow pattern is a five-roll mode of (�,+,

�,+,�) at Ra = 4000, a four-roll mode of (+,�,+,�)

at Ra = 7000 and four-roll modes of (�,+,�,+) at the
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Fig. 3. The velocity vectors and isotherms at various Ra for Case I. (a) Velocity vectors and (b) isotherms.
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rest of Ra. The results show that the flow patterns are

comparatively consistent and the effects of the changes

in Ra on the flow patterns are very small for this case.

For a larger number of simulated particles, 12 simu-
lated particles per collision cell (Case III) in Fig. 5,

the development of flow pattern is not consistent as

Ra increases. The flow patterns are four-roll modes

at Ra = 3000, 4000 and turn to five-roll modes at
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Fig. 4. The velocity vectors and isotherss at various Ra for Case II. (a) Velocity vectors and (b) isotherms.
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Ra = 5000, 6000; however, it alternates between a

four- and five-roll mode as Ra increases from 7000

to 10000. It can be seen from the results that for Case

III, the probability of appearance of four-roll mode is

equal to that of five-roll mode.
For Case IV in Fig. 6, each collision cell contains 14

simulated particles initially, there are respective flow

patterns in two different ranges of Ra. At Ra = 3000–

7000, the flow patterns are four-roll modes, but at

Ra = 8000–10000, they are five-roll modes. Though the
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Fig. 5. The velocity vectors and isotherms at various Ra for Case III. (a) Velocity vectors and (b) isotherms.
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flow mode changes at higher Ra, the flow patterns are

consistent at these two ranges of Ra. As the initial set-

ting of number of simulated particles per collision cell

increases to 16, for Case V in Fig. 7, the flow patterns

are five-roll modes of (+,�,+,�,+) at Ra = 3000, 6000
and 9000 and four-roll modes of (�,+,�,+) at other

Ra. It is obvious that the flow pattern alternates between

a five-roll mode and two four-roll modes as Ra increases

from 3000 to 10000. Furthermore, when the flow fields

at various Ra have the same number of convective rolls,
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Fig. 6. The velocity vectors and isotherms at various Ra for Case IV. (a) Velocity vectors and (b) isotherms.
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the arrangements of their vortices flow directions are

identical. Accordingly, we may say that the change of

flow pattern with increasing Ra is more regular in this

case.
For Case VI, the initial setting of simulated particles

in each collision cell increases further to 24, the flow pat-

terns are not always four- or five-roll modes, as shown in

Fig. 8. They are three-roll modes of (�,+,�) at
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Fig. 7. The velocity vectors and isotherms at various Ra for Case V. (a) Velocity vectors and (b) isotherms.
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Ra = 3000, four-roll modes of (�,+,�,+) at Ra = 5000,

8000 and 10000 and (+,�,+,�) at Ra = 9000, and five-

roll modes of (�,+,�,+,�) at Ra = 6000 and 7000 and

(+,�,+,�,+) at Ra = 4000. It is clear that the larger
number of simulated particles may still result in the

change in flow pattern which becomes irregular as Ra in-

creases. Moreover, it must be noted that the flow pattern

is not a four- or five-roll mode but a three-roll mode at
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Fig. 8. The velocity vectors and isotherms at various Ra for Case VI. (a) Velocity vectors and (b) isotherms.
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Ra = 3000 for this case. In Fig. 8, the isotherms between

X = 1 and 2 are almost parallel to the bottom/top walls

at Ra = 3000. In other words, the temperature gradients

in the horizontal direction are almost zero; therefore,
convective rolls can not develop in this region, and the

flow pattern in the enclosure is a three-roll mode.

We can see from these figures the change in convec-

tive flow patterns at constant Kn under various Ra
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calculated by the DSMC method with different number

of simulated particles. One may notice that the flow pat-

terns are either four- or five-roll modes in these simula-

tions, except that it is a three-roll mode at Ra = 3000 for

Case VI. However, in the continuum regime, the numer-

ical solutions obtained by the Navier–Stokes equations

with horizontal enclosure of AS = 4 are always four-roll

modes [23]. In other words, in some cases, the convec-

tion flow structures are not in compliance with the

hydrodynamic solutions. Other DSMC simulations

[14,16] had also found similar results that flow structure

was a two- or three-roll mode for AS = 2. It can be

attributed to the influence of rarefaction, the error in-

duced by the specular reflection boundary conditions

or the numerical fluctuation induced by the simulated

particles chosen in the DSMC simulation. In addition,

it might be caused by the increase in initial hot wall tem-

perature induced by increasing Ra at constant Kn, be-

cause the RB flow is very sensitive to the initial

conditions. There is one further result that we must

not ignore. In this simulation, the changes in flow pat-

terns are always among three- to five-roll modes. This

is the effect of the enclosure of length-to-height aspect

ratio chosen as AS = 4. The results show that the stabil-

ity of the solutions for Cases II and IV are superior to

the others. As can be seen, the flow patterns in Case II

are always four-roll modes except for Ra = 4000, and

those in Case IV are all four-roll modes at Ra 6 7000

and five-roll modes at Ra P 8000, respectively. We

therefore conclude that the simulation with larger num-

ber of simulated particles can not yield stable solutions

in RB convection.

We now concentrate on the changes in flow patterns

at constant Ra under various numbers of simulated par-

ticles. Table 1 summarizes the convective flow patterns
Table 1

The convective flow patterns at various Ra for different simulation ca

Ra 3000 4000 5000

Convective flow pattern Case I 4 4 5

�+�+ �+�+ �+�+

Case II 4 5 4

�+�+ �+�+� �+�+

Case III 4 4 5

�+�+ +�+� +�+�

Case IV 4 4 4

�+�+ +�+� +�+�

Case V 5 4 4

+�+�+ �+�+ �+�+

Case VI 3 5 4

�+� +�+�+ �+�+
for various Ra under different numbers of simulated par-

ticles. For Ra = 3000, the flow patterns are four-roll

modes for Cases I –IV, five-roll mode for Case V and

three-roll mode for Case VI. This indicates that the in-

crease in number of simulated particles can cause the

number of rolls to increase or decrease under constant

initial conditions. As Ra increases to 4000 and 5000,

two five-roll modes for Cases II and VI for the former

and Cases I and III for the latter can be observed, and

four-roll modes occur for the other cases. It is clear that

the probability of the occurrence of four- and five-roll

modes for Ra = 4000 is equal to that for Ra = 5000.

For a higher Rayleigh number, Ra = 6000, they are

four-roll modes for Cases I, II and IV and five-roll

modes for Cases III, V and VI. It is obvious that the

number of occurrences of four-roll mode is the same

as that of five-roll mode at Ra = 6000. At Ra = 7000,

the flow patterns are four-roll modes for all cases except

a five-roll mode for Case VI. This demonstrates that the

influence of the number of simulated particles on the

formation of convective flow pattern is small. At

Ra = 8000 and 9000, the flow patterns for Cases II, V

and VI are four-roll modes and those for Cases I, III

and IV are five-roll modes at Ra = 8000, and four-roll

modes are for Cases II, III and VI and five-roll modes

are for the rest of cases at Ra = 9000. The probability

of occurrence of the four-roll mode is equal to that of

the five-roll mode for these two Rayleigh numbers. As

Ra further increases to 10000, the flow patterns are

four-roll modes for Cases I, II, V and VI and five-roll

modes for Cases III and IV. It is clear that the number

of cases of four-roll mode is again more than that of

five-roll mode.

As seen from the results of this simulation, the flow

pattern can be influenced by the different initial setting
ses

6000 7000 8000 9000 10000

4 4 5 5 4

� �+�+ +�+� +�+�+ �+�+� +�+�

4 4 4 4 4

�+�+ +�+� �+�+ �+�+ �+�+

5 4 5 4 5

+ �+�+� �+�+ +�+�+ �+�+ �+�+�

4 4 5 5 5

�+�+ �+�+ �+�+� +�+�+ +�+�+

5 4 4 5 4

+�+�+ �+�+ �+�+ +�+�+ �+�+

5 5 4 4 4

�+�+� �+�+� �+�+ +�+� �+�+
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of number of simulated particles under the same initial

conditions in the RB convection flow and the dual or tri-

ple solutions may occur. This might be due to the ther-

modynamically unequivalent initial conditions at

microscopic level induced by the various initial setting

of number of simulated particles. Since the DSMC

method is a probabilistic simulation method and it uses

simulated particles that move and collide in physical

space to accomplish a direct simulation of the molecular

gas dynamics. The selection of collision pair employs the

NTC scheme and intermolecular collisions are treated

on a probabilistic rule. Macroscopic flow properties

are obtained by sampling particle properties in a sam-

pling cell. When the simulations use different number

of simulated particles, the selected collision pairs and

their post-collision properties may vary. Accordingly,

the same initial conditions from the macroscopic point

of view might be different from that from the micro-

scopic point of view. The RB convection flow is very

sensitive to the disturbances. The changes in microscopic

properties induced by the different initial setting number

of simulated particles in the DSMC computations might

yield a preferred one of the three possible flow patterns

which are three-, four- and five-roll modes. However, the

possibility of formation of three-roll modes is the lowest.

It is interesting to note that the probability of the occur-

rence of five-roll modes increases as Ra increases to 9000

except for Ra = 7000, and then it decreases at Ra =

10000 again. This may be caused by the increase in ther-

mal fluctuations induced by increasing Ra.

The preceding discussion is from the qualitative point

of view. Let us turn to the variations in flow properties

among the different simulation cases at constant Ra

from the quantitative point of view. In this simulation,

there are four types of flow patterns for various Ra:

one three-, one five- and four four-roll modes for

Ra = 3000, four four- and two five-roll modes for

Ra = 4000, 5000 and 10000, three four- and three five-

roll modes for Ra = 6000, 8000 and 9000, and five four-

and one five-roll modes for Ra = 7000. Accordingly, the

cases for Ra = 3000, 4000, 6000, 7000 are chosen for

illustration.

Fig. 9(a)–(d) show the dimensionless temperature h
and vertical velocity component V profiles at the center

of enclosure (X = 2) for various cases at Ra = 3000,

4000, 6000, 7000, respectively. In Fig. 9(a) for Ra =

3000, for Cases I– IV, the slopes of h decrease as Y

increases and vertical velocity V are all negative, and

there is just a little variation in h and V among these

cases. The result shows that the flow patterns for these

cases are the same and their flow properties in quantita-

tive terms are very close. For Case V, the slope of h de-

creases as the height increases from bottom wall to

middle height, then it increases as the height increases

from middle height to top wall; moreover, velocity V

at all heights are almost zero. This indicates that the flow
direction in the upper region is opposite to that in the

lower region; therefore, a convective roll is formed in

the middle of enclosure and its center is at the center

of enclosure, as shown in Fig. 7. The distributions of h
and V for Case VI are different from those for the above

cases. Accordingly, the flow pattern for Case VI is not

the four- or five-roll mode but the three-roll mode.

In Fig. 9(b) for Ra = 4000, for Cases I and V, the

slopes of h decrease and vertical velocity V are all nega-

tive; however, for Cases III and IV, the slopes of h in-

crease and vertical velocity V are all positive. This

indicates that the flows in the middle region of enclosure

go downward for Cases I and V, but they go upward for

Cases III and IV. Accordingly, the flow patterns for

Cases I and V and Cases III and IV are four-roll modes

of (�,+,�,+) and (+,�,+,�), respectively, as shown in

Figs. 3, 5, 6 and 7. It is worth noting that the values of h
and V for Cases I and V are very close and those for

Cases III and IV are almost equal. This demonstrates

that the macroscopic flow properties remain almost un-

changed quantitatively for the same flow patterns which

are obtained by simulation under constant initial condi-

tions with different number of simulated particles. For

Cases II and VI, the slopes of h decrease as Y increases

from 0 to 0.5, then they increase as Y increases from 0.5

to 1. It is clear that the shapes of the curve of h for Cases
II and VI are different from those for the other cases.

Therefore, the flow patterns are five-roll modes, as

shown in Figs. 4 and 8. It must be noted that the vertical

velocity V at all levels of Y for Case II is a little positive

and velocity V for Case VI is higher than that for Case

II; therefore, the center of the vortex in the middle re-

gion of enclosure is close to X = 2 for Case II and devi-

ates from X = 2 for Case VI.

Fig. 9(c) shows the profiles of h and V at X = 2 for

various cases at Ra = 6000. As the figure indicates, they

are considerably close for Cases I, II and IV. Since the

flow patterns for these three cases are all four-roll modes

of (�,+,�,+) as shown in Figs. 3, 4 and 6, the result also

shows that the macroscopic flow properties are steady

and independent of the initial setting of number of sim-

ulated particles for the same flow patterns. For Cases

III, V and VI, the shape of curves of h and V are similar,

whereas the flow patterns are five-roll modes of

(�,+,�,+,�) for Cases III and VI shown in Figs. 5

and 8 and (+,�,+,�,�) for Case V shown in Fig. 7.

However, it can be seen from Fig. 9(c) the deviations

in h and V between Cases III and VI are larger than

those between Cases V and VI. The flow direction of

the vortex in the center region of flow field for Case V

is opposite to that for Cases III and VI, but the center

of them are around X = 2; therefore, the shape of curve

of h and V for these three cases are similar. However, the

center of the vortex in the center region of enclosure for

Cases V and VI are closer to X = 2 than for Case III.

Therefore, the vertical velocity V for Cases V and VI
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Fig. 9. Dimensionless temperature h and vertical velocity V profiles at X = 2 for various simulation cases at Ra = 3000, 4000, 6000, and

7000. (a) Ra = 3000, (b) Ra = 4000, (c) Ra = 6000 and (d) Ra = 7000.
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are closer to 0 than for Case III, and their deviations are

smaller than those between Cases III and VI. At

Ra = 7000 in Fig. 9(d), the h and V at all heights of Y

for Cases I and II are almost completely equal, while

those for Cases III, IV and V are also nearly equivalent.

In addition, the slopes of curves of h and V for Cases I

and II are opposite to those for Cases III, IV and V.
Accordingly, the number of convection rolls are equal

for all cases but the flow directions of vortices for the

former two cases are reverse to those for the latter three

cases. As Figs. 3–7 indicate, at Ra = 7000, the flow pat-

terns are four-roll modes of (+,�,+,�) for Cases I and

II and (�,+,�,+) for the other cases. The result illus-

trates that the macroscopic flow properties are also
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unchanged for the same flow patterns in both cases. It is

worth noting that the distributions of h and V for Case

VI are different from those for Cases I –V. The shapes of

curves of h and V for Case VI are similar to those for

Case VI at Ra = 6000; therefore, its flow pattern is a

five-roll mode of (�,+,�,+,�) as shown in Fig. 8.

From the results mentioned above, if the flow pat-

terns obtained by simulation under constant initial con-

ditions with different numbers of particles have the same

number of rolls and flow directions, their flow properties

are almost constant. In other words, they are slightly

influenced by the number of particles. In addition, the

quantitative consistency for four-roll mode is better than

that for five-roll mode and the deviations of flow prop-

erties among different cases for high Ra are smaller than

those for low Ra. This shows that the influence of the

number of simulated particles on the flow structure of

five-roll mode and high Ra is stronger than that of

four-roll mode and low Ra in this study. Since the frac-

tion errors of flow properties for low Ra are larger than

those for high Ra, the deviations of flow properties are

larger for low Ra. The flow pattern in the x-direction

is assumed to possess the periodic structure, but the flow

near the boundary on each side might not form a com-

plete convection roll, for example, 2/3 and 1/3 of roll are

formed near the right- and left-side boundaries respec-

tively. However, both side boundaries are in specular

reflection conditions, that is to say, the temperature

should be symmetric to the side boundary and there is

no temperature gradient in the x-direction at the side

boundary. Accordingly, the convective roll must be sym-

metric to the side boundary. This causes imperfect con-

vective roll near the boundary on each side intending to

form a perfect roll and the flow pattern is a five-roll

mode in the enclosure of AS = 4. Since the simulation

with different initial setting of number of simulated

particles might cause the flow near side boundaries to

develop convective rolls in different size, the size of inner

convection rolls in the enclosure might also be changed.

Accordingly, the flow properties obtained by calculating

with the different number of simulated particles might be

varied at the same position in the flow field. For the

four-roll mode, the number of rolls is the same as the

aspect ratio of enclosure of AS = 4, the size of each

roll is almost equal; therefore, the number of simu-

lated particles has very little influence on the flow

properties.
5. Conclusions

A numerical investigation for a two-dimensional mi-

cro-scale RB flow has been performed by the DSMC

method with different initial setting of number of simu-

lated particles. It was found that the flow patterns in the

RB convection are three-, four- and five-roll structures
for an enclosure of AS = 4, and the number of convec-

tion rolls and their rotational flow directions can be

influenced by the different number of simulated particles

and Rayleigh number. In this simulation, the solutions

obtained by the DSMC method using a larger number

of simulated particles are not more stable than those

using less particles as Ra increases. In addition, it shows

that the macroscopic flow properties obtained by the dif-

ferent cases under constant initial conditions remain un-

changed for the same number of rolls and the same flow

directions. Our results suggest that a suitable number of

simulated particles can decrease the influence of numer-

ical fluctuation on the flow patterns, and it is necessary

when simulating RB convection which is sensitive to

the disturbances.
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